Monolithic zirconia and digital impression: case report

F. De Angelis¹, E. Brauner¹, G. Pignatiello¹, F. Mencio¹, D. Rosella¹, P. Papi¹, T. Di Carlo², A. Giovannetti¹, E. Brauner¹, G. Pompa¹, S. Di Carlo¹

¹Department of Oral and Maxillo Facial Sciences, Sapienza University of Rome; ²Private Dentist in Rome, Italy

Abstract

Aims. The aim of this study is to present a clinical case of a full arch prosthetic rehabilitation on natural teeth, combining both digital work-flow and monolithic zirconia.

Patients and methods. Digital impression was taken with an intraoral optical scanner (CS3500, Carestream Dental, Atlanta, GA, USA). A prosthetic rehabilitation was realized on natural teeth using monolithic zirconia from 1.6 to 1.4 and from 2.7 to 2.4 frameworks, while in the aesthetic area (from 2.3 to 1.3), technicians left on the structure a 0.8 mm vestibular space for ceramic layering.

Discussion. The combination of digital impression technology and the use of the monolithic zirconia had demonstrated the delivery of the final prosthetic device in a quick time without the need to re-model functional or aesthetic areas. The digital work-flow combines intraoral optical impression techniques and CAD/CAM technology, in order to achieve a fully digital and successful way to deliver prosthetic restorations to patients, providing aesthetics and function in shorter intervals of time. The clinical outcome of this study was satisfactory but a long-term evaluation is needed. Clin Ter 2017; 168(4):e229-232. doi: 10.7417/CT.2017.2011

Key words: digital impression, digital work-flow, full arch impressions, monolithic zirconia

Introduction

In a full arch impressions of multiple preparations of the teeth there are several difficulties such as the distortion of the material sometimes created by divergent teeth, humidity control, greater stress for the dentist and discomfort for the patient. Sometimes there are anatomical obstacles that prevent the taking of a good impression: this is the case of maxilla-facial oncological, malformed and traumatized patients (1-3). For these reasons this study has the aim to apply digital impressions in a full arch rehabilitations on natural teeth.

Digital impressions allow clinicians to get a quick impression validation: they can check immediately preparation parallelism, undercuts and if there is sufficient occlusal space. In complex full arch restoration cases, it is essential to ensure accuracy and precision of all stages to minimize any inaccuracies at the end of the treatment. Digital impression allows to eliminate most at risk phases ie: distortion of impression and of the plaster model, distortion of occlusion wax, bubbles on the model. Digital work-flow combines optical intraoral impression techniques and CAD/CAM technology, in order to achieve a fully digital and successful way to deliver prosthetic restorations to patients quickly. There are 2 types of zirconia monolithic materials: opaque and translucent zirconia. The opaque zirconia has increased flexural strength and is indicated in the posterior region of the mouth. The translucent zirconia has also important aesthetic properties, it allows the adoption of certain characterizations and thus is used in both posterior both in anterior areas because it still maintains excellent resistance. To day, many articles on monolithic zirconia and digital impression have been published on natural teeth and implants (4-5). The purpose of this article is to present, through the images of the clinical case, the potential that can be achieved by combining the two techniques for a full arch prosthetic rehabilitation.

Materials and methods

A 75-year-old male patient with a diagnosis of severe bruxism, bone reabsorption and decayed teeth in the upper jaw (Fig.1), presented at the Department of Oral and Maxillofacial Sciences of University Sapienza of Rome for a fixed prosthetic restoration. A fixed full-arch rehabilitation on natural teeth divided into two quadrants was programmed. The patient agreed to treatment and signed the informed consent form, according to the World Medical Declaration of Helsinki. Pillars had a chamfer preparation and before
impression taking with an intraoral optical scanner (CS3500, Carestream Dental, Atlanta, GA, USA) (Fig. 2), dental gingival retraction cord was inserted in the gingival sulcus. The system Carestream CS3500 does not require a matting powder and is characterized by a scan with an inclination up to 45° and with a depth of field from -2 mm to +13 mm. The acquisition software was the CS3500 Acquisition, it requires 50% of images’ overlapping taken in sequence to facilitate the matching work. The scans were performed without the use of artificial light sources. At the end of each scan the “cloud of points” has been processed by a software which has generated a polygon mesh representing the digital impression, which has been developed in a virtual STL model. To evaluate the accuracy of the scanner, the STL model was compared to an STL model derived from the scan of the master model obtained using a laboratory extraoral scanner Sinergia Scan, produced by Nobil Metal s.p.a. which uses the Optical RevEng Dental 2.5 as acquisition software that has measured the alignment error between the models with a precision of the order of 0.001 mm (1 µm). 10 digital impressions were detected. A mask was realized for each prosthetic pillar and the alignment error between the master model and each STL model was calculated (Tab. 1). For the evaluation of the precision, measurements were performed using the ExoCad software. Posterior elements restorations, from 1.6 to 1.4 and from 2.7 to 2.4 were performed in monolithic zirconia, while in the aesthetic area (2.3 to 1.3), technicians left on the structure a 0.8 mm vestibular space for ceramic layering (Fig. 3). Once the monolithic zirconia frameworks had been fabricated, the internal fit was checked intra-orally, using a silicone based fit checking material (Fit Checker, GC, Tokyo, Japan). At this stage the accuracy of the bite relationship record was also verified. Zirconia frameworks were perfectly fitting both on teeth and on polyurethane model, then structures were sent to dental technicians for ceramic layering of aesthetic area. The porcelain application was then carried out. During the final appointment final restorations were tried in the mouth and the aesthetics, contact points and occlusion were assessed. The final restorations were then cemented (Fig. 4). The cement used was a resin cement (RelyX™ Ultimate, 3M Espe).

Results

In this study patient had not referred any discomfort, no breathing difficulty, no teeth and periodontal sensibility, no smell and taste nuisance. The patient perception was positive.

<table>
<thead>
<tr>
<th>SCAN</th>
<th>ALIGNMENT ERROR BETWEEN PROSTHETIC PILLARS (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FROM 1.6 TO 2.7</td>
</tr>
<tr>
<td>SCAN 1</td>
<td>112</td>
</tr>
<tr>
<td>SCAN 2</td>
<td>101</td>
</tr>
<tr>
<td>SCAN 3</td>
<td>125</td>
</tr>
<tr>
<td>SCAN 4</td>
<td>98</td>
</tr>
<tr>
<td>SCAN 5</td>
<td>115</td>
</tr>
<tr>
<td>SCAN 6</td>
<td>122</td>
</tr>
<tr>
<td>SCAN 7</td>
<td>128</td>
</tr>
<tr>
<td>SCAN 8</td>
<td>99</td>
</tr>
<tr>
<td>SCAN 9</td>
<td>118</td>
</tr>
<tr>
<td>SCAN 10</td>
<td>129</td>
</tr>
</tbody>
</table>
The CS 3500 CareStream® system has demonstrated an acceptable level of accuracy and precision for prosthetic rehabilitation on natural teeth. The combination of digital impression technology and the use of the monolithic zirconia has enabled the delivery of the final prosthetic device in a quick time and without the need to remodel neither functional nor aesthetic. The clinical outcome was hopeful and a the long term evaluation is needed.

Discussion

Several studies have investigated and compared digital and conventional impression techniques in terms of both precision and accuracy (6-7). Digital impressions are dimensionally very stable, while traditional materials may undergo variations which could affect accuracy of the final result (8-9).

Especially in case of full-arch restorations on natural teeth, favouring accumulation of plaque (10), cement dissolution (11) and inflammation of periodontium (12). In some cases, however, it may be necessary to realize the image of three-dimensional physical models (13-14). These models are not made of plaster (15), but of polyurethane and they eliminate the risk of inaccuracies arising from the expansion of the gypsum and the possible movement or displacement of the individual prosthetic abutment when model is sectioned. The precision of frameworks made from optical impression is clinically comparable to those conventionally manufactured. Both methods lead to the realization of fixed rehabilitations with a marginal gap of less than 120 µm as a minimum reliability value to consider satisfactory a prosthetic rehabilitation (16-17).

The majority of current studies report the fit of single crowns on natural teeth (10-11). In these cases, the accuracy and precision of the intraoral scanner is considered greater compared to traditional impression. This may reveal very useful in complex oral rehabilitations (18-20). Few studies were conducted regarding full arch restorations (21-26). Using a dental resin model of a full-arch restoration containing 14 elements, Patzel et al, in 2014 (27) tested the accuracy of 4 intraoral scanners. The averages accuracy varied from 38 to 332.9 µm, while the precision range fluctuated from 37.9 to 99.1 µm. The development of digital models has several advantages that include reduced storage requirement, rapid access to 3D diagnostic information and easy transfer of digital data for communication with professionals and patients (28). The interest on intraoral scanners has been growing and new devices are continuously launched. The accuracy, reliability, time requirement and patient perception should be demonstrated using several available intraoral scanners and they would be comparable to those of the conventional technique for full-arch impressions (29). There are still several obstacles and failures to detect intraoral impressions. Some systems require a spray layer on the tooth surface and the thickness of the powder may slightly transfurging the contour of the tooth. Another serious problem is the movement of the scanner during the scanning which can affect the accuracy of scanning, especially in full-arch restorations (30).

Alginites, polyether, vinyl polysiloxane, impression materials, and all kinds of plaster stone can suffer some degree of distortion, crating differences in respect to actual tooth size (31-32).

Procedure duration, patient comfort, and associated costs should also be accounted when analyzing the efficacy of clinical procedures (33). Digital models produced by intraoral scan eliminate the need of impressions materials; however, the size of the tip of the intraoral scans makes it difficult to access some intraoral areas, potentially interfering with the image quality. The relatively scarcity of studies performed in vivo or intraorally is another limitation. Clinically, there are some restrictions as individual tolerance of patients, little work space in mouth, or interferences by tongue movement or orthodontic appliances. Flügge et al. (34) even suggest that the intraoral conditions can influence the inaccuracy of a scan. In order to overcome the accuracy reduction in full-arch restorations we decided to divide the monolithic zirconium structure into two hemiarches because accuracy values in the hemiarch remain very high (Tab.1).

It was a remarkable observation that only few studies have evaluated complete-arch scans acquired directly in the patient’s mouth. The assessment of time requirements for full-arch scanning is relevant to determine whether digital technology is practical for routine impression taking in prosthodontics. The scanning times measured in the published studies varied largely (35-36). The methodological inconsistency of the available studies prevented the collection of a conclusive evidence regarding time efficiency of full-arch scanning. Therefore, in future studies, for comparative purposes among scanners and with the conventional method, it would be advisable to precisely define what procedural steps should be included in the computation of the scanning time.

The authors declare they have no conflict of interest regarding the publication of this paper.

References

