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Introduction 

Oxygen is a vital element for living beings and it has 
both positive benefits and potentially damaging effects 
on biological systems (1). Oxygen participates in high-
energy electron transfers and contributes to the synthesis 
of Adenosine-5-TriPhosphate (ATP) (2,3). This is vital for 
complex multicellular beings, but also it is liable to attack 
any biological molecule as proteins, lipids, or nucleic acids. 
Although the human body is under constant oxidative attack 
from Reactive Oxygen Species (ROS) (4), a complex mecha-
nism of antioxidant defenses has evolved to hold this attack 
in balance. However, sometimes this equilibrium could be 
perturbed, leading to oxidative stress. Oxidative stress is 
best defined as an alteration in the pro-oxidant–antioxidant 
balance in favor of the production of oxidizing species that 
leads to potential damage (5). 

The prooxidant-antioxidant balance could be disrupted 
by changes in either side of equilibrium (abnormally high 
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generation of ROS or deficiencies in the antioxidant defen-
ses). The cellular outcome depends on the concentration 
of ROS causing a wide range of effects from homeostatic 
adaptations to irreversible damage and cell death. Degra-
dation of pathogens, regulation of cardiac and vascular 
activities, regulation of intracellular calcium concentration, 
and phosphorylation or dephosphorylation of proteins are 
among the functions performed by ROS (6).

Oxygen Species ROS are often called “Free radicals” 
and are defined as species containing one or more unpaired 
electrons that confer their high reactivity. In biological 
systems, free radicals are usually generated from elements 
involving oxygen and nitrogen. The most important free 
radical is superoxide anion (7). 

Oxidative stress is now recognized to play a central role 
in the pathophysiology of many different disorders, inclu-
ding complications of pregnancy (8–10). 

It has been proved that oxidative stress plays a role in 
alcohol-induced damage (11)(12–14) and its effects can be 
mitigated by resveratrol in mice (13) and olive oil in the 
Mediterranean diet  (15,16). In human adults, ethanol is 
oxidized to acetaldehyde using NAD+, mainly by the hepatic 
enzyme Alcohol DeHydrogenase (ADH) (13). Acetaldehyde 
is a highly unstable compound and it quickly forms highly 
toxic free radicals (17–19).

It has been shown that many pediatric syndromes are 
associated with oxidative stress like Williams syndrome, 
Down syndrome, Marfan syndrome, Gaucher syndrome, 
ataxia–telangiectasia, autistic spectrum disorders, Fanconi’s 
anemia, primitive immunodeficiencies and Fetal Alcohol 
Spectrum Disorders (FASD) or Fetal Alcohol Syndrome 
(FAS) (6,20). FASD or  FAS are “spectrum” (21) of patho-
logical conditions shown both in human and animal models 
caused by alcohol drinking during pregnancy (22–25).  Al-
cohol is a legal and socially acceptable substance of abuse, 
but it is also very harmful because of its impact on physical, 
mental, family and social health (11,14,26–32). Alcohol 
is also a teratogenic substance capable of causing malfor-
mations when pregnant women drink during pregnancy by 
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damaging embryonic neural crest cells  (33–36). This can 
result in the birth of a baby with severe birth defects, inclu-
ding a wide range of deformities and disabilities identified 
as FASD spectrum. 

Acute and chronic alcohol use has been shown to in-
crease the production of ROS, lower cellular antioxidant 
levels, and enhance oxidative stress in many tissues (37,38). 
In chronic alcoholics, prolonged exposure of kidneys 
and liver to these compounds can lead to severe damage. 
Acetaldehyde is transformed into ALDH2 (Aldehyde de-
hydrogenase 2 family) and finally into acetyl-CoA. Once 
acetyl-CoA is formed it enters the normal citric acid cycle 
(17) and disrupts the metabolism of the Krebs cycle. These 
alterations can shift metabolism towards lipid metabolism, 
leading to the synthesis of triglycerides in the liver, causing 
liver steatosis (39). 

This narrative review aims to summarize evidence about 
the role of oxidative stress in the pathophysiology of the 
main obstetric complications like placental pathology, Pre-
Eclampsia (PE), Intrauterine Growth Restriction (IUGR), 
gestational diabetes, and miscarriage with particular interest 
in the neglected role of alcohol abuse.

 

Methods

Studies examined in this narrative review were obtai-
ned by searching MEDLINE (last visited May 2022) with 
keywords “oxidative stress”, “alcohol”, “pregnancy”, “gesta-
tion”, “placenta”, “placentation”, “preeclampsia”, “IUGR”, 
“gestational diabetes”, and “miscarriage”. After filtering for 
species (human) a total of 1559 papers were found. Filtering 
for titles, the number of works finally included was 57. Other 
publications included in the review were retrieved through 
a manual search of the bibliography.

Results 

Placental pathology

The placenta is a discoidal organ whose main duty is to 
mediate the exchange of oxygen and nutrients between mo-
ther and baby during pregnancy. This exchange takes place 
between the placental villi and intervillous space (40). The 
process of the formation of the placenta is called placenta-
tion. It occurs when the blastocyst implants properly in the 
myometrium, and the invasion of extravillous trophoblasts 
into the maternal decidua and spiral arteries results in the 
modeling of spiral arteries and lowering circulation resi-
stance in the intervillous space (41). When placentation is 
disrupted, it may result in diminishing of placental function, 
causing intrauterine growth restriction and increased arterial 
resistance leading to hypertension and preeclampsia (42). 

It has been shown that placental development occurs in a 
relatively low oxygen concentration, supported by secretions 
from the endometrial glands rather than the maternal circu-
lation (43,44). It has been postulated that this environment 
protects the developing embryo from oxygen-free radical 
damage (45). Maternal arterial blood is prevented from 
entering the intervillous space of the placenta by plugs of 

extravillous cytotrophoblast cells (EVT) that invade the 
mouths of the uterine spiral arteries (46).  The maternal 
intraplacental circulation is only fully established towards 
the end of the first trimester when these plugs dislocate 
through a mechanism that is currently unknown (47). This 
phenomenon results in a shift from low oxygen tension to 
higher oxygen tension in the intervillous space at the end 
of the first trimester (48). 

Although the rise in oxygen in the intervillous space 
was described as physiological, it results in some placental 
oxidative stress (48). To compensate for this elevation, a rise 
in antioxidant activity is observed as the placenta adapts to 
this new highly oxygenated environment. There is a strong 
rise in oxidative stress in the trophoblast associated with 
the onset of maternal blood circulation in the placenta. This 
coincides with an potentiation in placental activity of the 
antioxidants glutathione peroxidase and catalase in normal 
pregnancy (43). In the placenta, the cytotrophoblasts and the 
villous stromal cells can synthesize new antioxidants when 
exposed to ROS (49). However, if the capacity to synthesi-
ze new antioxidants is not sufficient to counterbalance the 
excessive amount of ROS, oxidative stress results in DNA 
and protein damage and lipid peroxidation (45). 

Oxidative stress is an important factor in the pathophy-
siology of many complications during the second and third 
trimester of pregnancy. As stated above, inadequate placen-
tation could result in an imbalance of oxidant/antioxidant 
activity leading to a chronic state of oxidative stress (48,50). 
Oxidative stress can result in several pregnancy complica-
tions such as preeclampsia (PE), which is characterized by 
maternal endothelial cell dysfunction resulting in systemic 
endovascular inflammation (51). Early PE (below 32 weeks 
of gestation) is often associated with IUGR (51). 

Preeclampsia (PE) 

PE is one of the main diseases of pregnancy, charac-
terized by hypertension and proteinuria, that generally 
affects pregnancies during the second or third trimester of 
gestation (52–57). PE is defined by maternal hypertension 
and proteinuria. In severe cases, the mother may develop 
comorbidities such as Disseminated Vascular Coagulation 
(DIC), edema, liver failure and eclampsia. Major fetal com-
plications associated with PE are Fetal Growth Restriction 
(FGR) resulting in low birth weight, prematurity and fetal 
death (58–63). Although the pathogenic mechanisms of PE 
are not completely disclosed, local or systemic oxidative 
stress may explain the pathological features associated with 
this complication.  It is known that the antioxidant capaci-
ty is affected in women with PE leading to an imbalance 
between the existing pro-oxidant and antioxidant systems 
with consequent oxidative stress (64). It is unclear whether 
oxidative stress is the cause or result of PE, despite placental 
insufficiency due to inadequate remodeling of the maternal 
vascularity that perfuses the intervillous space plays an im-
portant role in the development of this syndrome (64). This 
condition can lead to a complex process of uteroplacental 
ischemia-reperfusion with the release of cytotoxic factors 
into the maternal circulation with a consequent elevation 
in oxidative stress (65,66). Physiologically, the increase 
in oxidative stress is counterbalanced by the growth in the 
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synthesis of antioxidants (67), but, when oxidative stress 
overcomes the antioxidant defense in the placenta, oxida-
tive damage could spread to distal tissues. Indeed, plasma 
membranes of circulating blood cells can oxidize passing 
through the ischemic placenta, thus helping to propagate 
oxidative stress to the distal tissues (68).  Oxidative stress of 
the syncytiotrophoblast is one of the key characteristics of PE 
(69,70). It seems to be known that stressed syncytiotropho-
blast can release a mix of factors such as pro-inflammatory 
cytokines, exosomes, anti-angiogenic agents and free fetal 
DNA into the maternal circulation (71). These factors could 
be responsible for the disruption of maternal endothelial 
function leading to a systemic inflammatory response, i.e. 
the clinical syndrome of PE (72). 

Fetal Growth Restriction (FGR)

FGR is defined as the inability of the fetus to reach its 
genetically determined growth potential (52–56,73). Fetal 
growth depends on the availability of nutrients, which in 
turn is related to maternal diet (74,75), uteroplacental blood 
supply (65,76,77), development of placental villi, and the 
ability of the villous trophoblast and fetoplacental circulation 
to transport nutrients (58–61,78). Placental complications 
of pregnancy leading to FGR have their pathophysiological 
roots in the early stages of placentation and can manifest 
from the end of the first trimester of pregnancy (79). The 
action of placental oxidative stress, with associated ne-
crosis and apoptosis of the trophoblastic epithelium of the 
placental villi, would compromise the placentation process 
(1,52–56,58–61). In this phase, the trophoblastic invasion 
is sufficient to allow early placentation phases of pregnancy 
but too superficial for the complete transformation of the 
uteroplacental arterial circulation, predisposing to a repeti-
tive phenomenon of ischemia-reperfusion, with consequent 
chronic oxidative stress in the placenta and at the spread of 
maternal endothelial cell dysfunction (79). There is general 
agreement that poor spiral artery remodeling is the cause 
of placental changes that predispose to maternal vascular 
FGR (79).  

Gestational Diabetes Mellitus (GDM)

The incidence of GDM is globally rising  (80) affecting 
one in every four to five pregnancies (81). It is widely known 
that hyperglycemia can upregulate markers of chronic in-
flammation and contribute to augmented reactive oxygen 
species generation (62,82–88). Therefore, a pregnancy com-
plicated with GDM is more likely to develop oxidative stress 
compared to uncomplicated pregnancy (89). It has been 
shown that maternal gestational diabetes during pregnancy 
can negatively affect fetal growth leading to macrosomia 
or intrauterine growth restriction (90). Moreover, it was 
demonstrated that GDM affects fetal neurodevelopment 
due to hypoxia, inflammation and oxidative stress that may 
compromise neuronal integrity (80). 

Few studies were found about the role of neurotrophins 
in GDM (36). It was observed that one of the earliest abnor-
malities in pregnancies complicated with GDM is increased 
oxidative stress in the placenta (89). Placental release of 
8-isoprostane was double in pregnant women with GDM 

(P<0.001) when compared to healthy controls. Superoxide 
dismutase activity and protein carbonyl content were eleva-
ted in placentae obtained from women with GDM (P<0.04 
and P<0.004 respectively), whilst there was no significant 
difference in the activity of glutathione peroxidase (91). 

Imbalances in maternal intake of Long-Chain Polyun-
saturated Fatty Acid (LCPUFA) lead to elevated oxidative 
stress (92). Reports indicate that oxidative stress and 
LCPUFA such as docosahexaenoic acid influence levels of 
neurotrophins in mice (93). 

During pregnancy, the deficiency of the antioxidant 
system can lead to embryonic and fetal exposure to the har-
mful effects of oxidative stress. There is a higher incidence 
of congenital malformations in the offspring of diabetic 
women, and some evidence suggests that higher lipid pero-
xidation levels and lower antioxidant levels may be causative 
factors (94). Women with GDM are also at an augmented 
risk for complications such as endothelial dysfunction and 
cardiovascular diseases (95).

Pharmaceutical approaches to modulate excessive 
oxidative stress and the associated adverse inflammatory 
reactions in pregnancy are scarcely practiced due to po-
tential teratogenic effects (81). Recently, the prevention of 
pregnancy disorders through dietary intake has received 
more attention as a doable and relatively safe intervention. 
Dietary intervention (96) may reduce inflammation and the 
risk of GDM. A reduction and improvement in carbohydrate 
quality rather than a restriction in the high-fat content in the 
diet plays a major role. The habitual diet plays an important 
role in the improvement that can be expected from dietary 
adaptation as seen in women with GDM (97,98). 

Miscarriage

In Italy, miscarriage refers to the unintentional termi-
nation of a pregnancy before the 180° day of amenorrhea 
or when fetal weight is < 500 g (99). Recent studies have 
shown that 8% to 20% of clinical pregnancies end by spon-
taneous miscarriage before 20 weeks (100). The etiology is 
still controversial: chromosomal abnormalities, congenital 
anomalies, and maternal factors such as uterine anomalies, 
infection, diseases, and idiopathic causes constitute the main 
known causes (101,102).

Although it is known that oxidative stress is related to 
infertility both in men and women, it is still unclear if it 
is significant for the maintenance of a healthy pregnancy 
(103–109). As mentioned above, normal placentas experien-
ce an oxidative burst between 10 and 12 weeks of gestation 
with increased production of ROS. ROS levels will come 
back to normal as placental cells gradually acclimate to the 
newly oxidative surroundings (110). In cases of spontaneous 
miscarriage, the onset of maternal intraplacental circula-
tion occurs prematurely and sporadically between 8 and 9 
weeks of pregnancy in comparison to normal pregnancies 
(110,111). These placentas showed high levels of HSP70, 
nitrotyrosine (111,112), and markers of apoptosis in the 
villi, suggesting oxidative damage to the trophoblast with 
subsequent termination of the pregnancy (1). Antioxidant 
enzymes are unable to counterbalance ROS at this point 
since their expression and activity grow with gestational 
age (110). 
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Alcohol 

Alcohol harms pregnancy, causing miscarriage (113–
115), teratogenesis  (116,117), intrauterine growth restriction 
(118,119), stillbirth (115,120), premature birth (115,120), 
neonatal and infantile sequelae, as deformities and disabili-
ties, related to Fetal Alcoholic Spectrum Disorders (FASD) 
(21,121–125). FASD has no genetic etiology and it is caused 
only by alcohol drinking during pregnancy (6,126–129). 
It has been suggested that ethanol can induce oxidative 
stress through many pathways, like redox state changes,  
production of the reactive product acetaldehyde,  damage to 
mitochondria, direct or membrane effects caused by hydro-
phobic ethanol, ethanol-induced hypoxia, ethanol effects 
on the immune system and altered cytokine production and 
ethanol induction of CYP2E1 (37).  CYP2E1 is a P450 that 
has the highest oxidation activity of alcohol to acetaldehyde. 
At low alcohol concentrations, CYP2E1 can reach about 
10% of the liver’s total alcohol oxidation capacity and its 
activity increases with the concentration of alcohol in the 
blood (38,130). CYP2E1 expression was detected as early 
as week 16 in the human fetal liver, and its level may further 
increase upon exposure to ethanol during pregnancy (131). 
Overall CYP2E1 expression increases with gestational age, 
as it was detected in about 37% of the second trimester and 
about 80% of the third trimester (132). Finally, the presence 
of CYP2E1 may be a major ROS-generating factor in the 
fetus following maternal alcohol consumption, and the 
low clearance rate may make the fetus more susceptible to 
ethanol-mediated abnormalities. CYP2E1 expression in the 
placenta may also vary in mothers who drink heavily (4 or 
more drinks per day – 1 unit = 12 grams of ethanol in Italy) 
making their fetuses more susceptible to ethanol-enhanced 
oxidative stress (133). 

Moreover, it has been proved that oxidative stress can 
damage DNA, contributing to morphological and functional 
developmental disorders in animal models resulting from 
exposure to ethanol in utero or in embryo culture (134). 
ROS can cause altered signal transduction and oxidative 
macromolecular damage, including DNA damage and alte-
red gene expression, which may contribute to teratogenesis 
(134–138). 

The capability of the fetus to metabolize ethanol may 
vary during pregnancy. Low hepatic levels of Alcohol De-
Hydrogenase (ADH) activity in the fetus in the first trimester 
show that the fetus has a limited capacity to metabolize 
alcohol early (139). ADH activity gradually increases with 
gestational age (140).  

A link between oxidation and FASD has been shown 
as a strong effect of alcohol exposure on the hippocampal 
proteome, culminating with the alternation of around 600 
hippocampal proteins playing important roles in the axonal 
growth regulation, such as annexin A2, nucleobindin-1, 
and glypican-4, regulators of cellular growth and develop-
mental morphogenesis and, in the cerebellum, cadherin-13, 
reticulocalbin-2, and ankyrin-2 (141). The increase in ROS 
in FASD also appears to be due to NOX enzymes belonging 
to the NADPH-dependent family of enzymes (142). The 
NOXs enzymes are expressed at the level of microglia, astro-
cytes, and the vascular system at the cerebral level, with an 
important role in the appropriate brain development (142). 

The isoforms most involved in ROS production are NOX2 
and NOX4 (143). In FASD patients, it would appear that 
early exposure to ethanol during pregnancy would increase 
the activity of NOX isoforms with a significant increase 
in ROS, cell damage, and ultimately apoptosis (143). This 
pathway, in conjunction with the above-mentioned activity 
of CYP2E1, would explain the increase in ROS and the con-
sequent phenotype of FASD patients (144). The teratogenic 
effects of alcohol are thought to be the ultimate result of the 
ethanol-induced dysregulation of a variety of intracellular 
pathways, which ultimately culminate in toxicity and cell 
death (145). The generation of ROS as the possible result of 
ethanol exposure produces an imbalance in the intracellular 
redox state, leading to an overall increase in oxidative stress 
(146). This would explain the predominant effect that alcohol 
has on the brain regarding neurobehavioral impairment and 
deficient brain growth since brain tissue is rich in fatty acids, 
which chemically are the perfect substrate for ROS (147). As 
a consequence, fetal brain tissue results in damage during 
organogenesis, manifesting neurological dysfunctions after 
birth (146–149).

Notably, antioxidant supplementation during pregnan-
cy could counteract or mitigate the oxidative elevation 
induced by alcohol abuse as shown also in animal models 
(13,150–159).

Discussion
 

Figure 1 summarizes the role of oxidative stress in the 
pathogenesis of several obstetric complications.   This short 
review aimed to highlight evidence about the role of oxi-
dative stress in the pathophysiology of the main obstetric 
complications like placental pathology, PE, IUGR, gesta-
tional diabetes and miscarriage, with particular interest on 
the neglected role of alcohol misuse. 

Negative effects of alcohol over health have been exten-
sively proved causing dependence (160–164), liver damage 
(38), cancer (116,165–168) and FASD if drunk during 
pregnancy (21,35). Also, paternal alcohol use is considered 
relevant to fetal development (169–173). 

Alcohol activity increases oxidative stress by increa-
sing ROS levels and leading to macromolecular damage, 
endothelial damage, and impaired placentation. Particular 
attention must be paid to the presence of CYP2E1, probably 
being a ROS-generating factor in the fetus following mater-
nal alcohol consumption and leading the fetus to be more 
susceptible to ethanol-mediated abnormalities in heavily 
drinking mothers (4 or more drinks per day) (89). 

It is controversial if the effects of red wine could be 
mitigated by resveratrol (16):  it was observed that animals 
early exposed to red wine had minor damage, probably due 
to the antioxidant effects of polyphenols. Data show that 
resveratrol or other polyphenols can effectively counteract 
serum free radicals’ formation caused by alcohol intake, also 
contrasting alcohol-induced neurotrophin elevation in the 
liver. The observation of both negative and positive effects 
of red wine on health is known as the controversial “French 
Paradox” (174), showing that in France incidence of coro-
nary heart diseases was low and it may be partly attributed 
to the protective function of red wine (175,176).  Therefore, 
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several studies have issued the antitumoral potential of wine 
phenols, such as resveratrol and quercetin, showing that 
moderate red wine consumption (12-35 g of ethanol per 
day) may exert a protective effect (166,177). 

It is still not clear if oxidative stress induced by red wine 
could be somehow mitigated by resveratrol and polyphenols, 
leading to minor damage to the pregnancy. However, the 
safest advice that healthcare professionals should give to 
women during pregnancy or when looking for a child is to 
completely avoid alcohol consumption (35). 
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