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Background

This work is a review of the strategies that may be used 
for laboratory diagnosis of Clostridium difficile infection 
(CDI). Worldwide, CDI represents an important public 
health problem. European and American studies report 
an increasing of CDI in terms of incidence, prevalence, 
morbidity and mortality (1). CDI causes a wide spectrum 
of disease, ranging from mild to severe diarrhoea (2-3) due 
to cytotoxic power of their enzymes (C. difficile toxin A: 
TcdA and C. difficile toxin B: TcdB). Both the toxins are 
potent monoglucosyltransferases, active on small GTP- 
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Abstract

Clostridium difficile causes antibiotic-associated diarrhoea and 
pseudomembranous colitis. The main virulence factors of C. difficile are 
the toxins A (TcdA) and B (TcdB). A third toxin, binary toxin (CDT), 
which pathogenetic role had been remained largely overlooked until 
few years ago, nowadays have been detected in 5%-23% of strains. C. 
difficile has spread around world. Clostridium difficile infection (CDI) 
is one of the most common health-care associated infections and a 
significant cause of morbidity and mortality among older adult hospita-
lized patients. Diagnosis of CDI is often difficult and has a substantial 
impact on the management of patients with disease. It is usually based 
on a clinical history of recent antimicrobial usage and diarrhoea in 
combination with laboratory tests. Although the conventional methods 
are crucial for the diagnosis and the subsequent treatment of CDI, a 
timely laboratory diagnosis is essential for the detection of toxigenic 
strains providing either to an effective and  immediately treatment or 
to the prevention of further disease transmission. 

In this review we provide general recommendations for testing of 
samples collected from patients with suspected CDI. Clin Ter 2019; 
170(1):e41-47.  doi:  10.7417/CT.2019.2106
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binding proteins (Rho, Rac and Cdc42) involved either in 
the regulation or in the formation of the cytoskeletal actin 
in the intestinal epithelium (4-5). In addition, some C. 
difficile strains produce a third toxin (Binary toxin, CDT), 
composed of an enzymatic component (CDTa) and a binding 
component (CDTb). CDTb binds to a cell receptor leading 
to the internalization of CDTa into the cytosol catalysing 
the ADP-ribosylation of momomeric actin and the resultant 
disruption of the actin cytoskeletal (6-7). The majority of C. 
difficile strains harbouring the binary toxin genes are also 
A+ B+ (A+ B+ CDT+). Several studies have reported that 
the production of CDT in addition to TcdA and TcdB by C. 
difficile is associated with severe disease, higher mortality 
and an elevated risk of recurrence in humans, suggesting that 
CDT might play an important role in disease pathogenesis 
(8). Among A+ B+ CDT+ strains, the most prevalent type is 
the epidemic PCR ribotype 027/ toxinotype III, also known 
as 027/B1/NAP1 (9). This ribotype has an 18-base pair de-
letion at nt117 of TcdC, a negative regulator of expression 
either of TcdA or TcdB, therefore there is an iper-production 
of TcdA and TcdB (10). In the last decade, this strain has 
increased in Europe, USA, Canada and Asia (11). In Italy, 
it actually represents around the 9% of the toxigenic strains 
isolated in hospitalized patients (12).

Recently, some studies have highlighted an increase of 
C. difficile strains producing the binary toxin, despite the 
lack of cdtA gene (A- B+ CDT+) (13-14). This strain is 
the epidemic PCR ribotype 036/ toxinotype X (15). Inte-
restingly, Geric et al. and Eckert et al. have described also 
some strains (about 2%) producing the binary toxin but 
negative for cdtA and cdtB genes (A- B- CDT+) (16-17). 
Among A- B- CDT+ strains, the most prevalent type is the 
epidemic PCR ribotype 033/toxinotype XIa/b (18-19). In 
the last ten years, the incidence of diseases associated with 
the new emerging ribotypes has increased either in Europe 
or in other Countries (USA, Canada and Asia), therefore, 
the timely laboratory diagnosis is crucial for the treatment 
of CDI (11, 20-21).

The diagnosis of CDI should be based on a combination 
of clinical and laboratory findings.
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CDI should be suspected in patients with acute diar-
rhoea (>3 loose stools in 24 hours), particularly in the 
setting of relevant risk factors (including recent antibiotic 
use, hospitalization and advanced age) (22). Although the 
conventional methods are crucial for the diagnosis and the 
subsequent treatment of CDI caused by TcdA and TcdB 
producing strains, a timely laboratory diagnosis is essential 
for the detection of hypervirulent strains providing either to 
an effective treatment immediately or to the prevention of 
further disease transmission (1).

The aim of this review is to briefly provide general 
recommendations for testing of samples taking in account 
the most accepted guidelines for diagnosis, treatment and 
prevention of CDI (23).

Conventional methods

Previously, the stool cytotoxicity (CTA) and the toxi-
genic culture (TC) methods had been used in the diagnosis 
of CDI (24-26). The CTA is sensitive and specific but it 
is relatively slow, time-consuming and expensive for the 
necessity of maintaining cell lines. For regards the TC, it is 
either very slow (48 to 72 h) or laborious. Moreover, the test 
is not able to identify the non-toxigenic strains. Therefore 
both conventional methods are unlikely to be adopted by a 
clinical laboratory as the standard methods for C. difficile 
testing. As of today, most laboratories have adopted enzyme 
immunoassays (EIAs) for toxins A and B as the routine 
method of testing (27). 

Multistep algorithm for the laboratory diagnosis of CDI

According to the The European Society of Clinical Mi-
crobiology and Infectious Diseases (ESCMID), the diagnosis 
of CDI recommends the use of a two or three-step algorithm. 
The first step consists of either a glutamate dehydrogenase 
enzyme immunoassay (GDH-EIA) or the nucleic acid am-
plification test (NAATs) as screening test. Samples resulting 
negative from the first step can be reported as negative CDI, 
but those with positive results should be confirmed  (toxins-
EIA).  Subsequently, the samples confirmed by this second 
step can be reported as positive CDI (28).

A number of laboratory stool tests are available alone or 
in combination as part of a diagnostic algorithm:
–	 GDH-EIA 
–	 toxins EIA
–	 NAATs

GDH-EIA 

The C. difficile produces and secretes GDH (highly 
conserved enzyme), which allows to the bacterium to limit 
the oxidative stress derived from inactivating hydrogen 
peroxide through the production of ketoglutarate (29). For 
this assay, several studies have shown a sensitivity of 85-
95% and a specificity of 89-99%, underlining in particular 
a high negative predictive value, making it useful for a rapid 
screening (30-31) (Tab.1). However, its value is limited 

because it is not able to discriminate between toxigenic and 
non-toxigenic strains (32).

 
Toxin- EIA

Although some strains produce only toxin B, most C. 
difficile strains produce both toxins A and B (33-37). No CDI 
due to strains producing toxin A alone has been reported.

In the last two decades, the toxins EIA has been among 
the most widely used for diagnosing CDI for their rapid 
and inexpensive performance despite their poor sensitivity 
(38). In fact, this assay shows a sensitivity of around 60% 
and a better specificity (up to 99%), though several studies 
report the presence of false positives values associated to 
assay (39-41) (Tab.1). Moreover, it is important to note that 
C. difficile toxin degrades at room temperature and might 
be undetectable within two hours after collection; there-
fore, specimens should be kept at 4ºC. To overcome these 
limits, the NAATs represent the best method to detect the 
toxigenic strains.

 
NAATs

NAATs detect one or more specific genes of toxigenic 
strains; the critical gene is tcdB, which encodes for toxin 
B. NAATs are highly sensitive (42-44) compared to EIA 
(38, 45-46). 

NAATs are specific for toxigenic strains but do not 
test for active toxin protein production and are capable of 
detecting asymptomatic carriers of C. difficile leading to 
either an overdiagnosis of CDI or an antibiotic treatment 
of patients who may not require such therapy with subse-
quently overestimation of hospital CDI rates (47). In fact, 
Polage et al. in their study on more than 1400 patients with 
suspected CDI have demonstrated that patients whose stool 
were positive by NAAT but negative by immunoassay had a 
lower toxin load and less diarrhoea than patients for whom 
both assays were positive (48). For circumstances in which 
initial testing consisted of NAAT (with positive result) is 
appropriate subsequent testing with the toxins EIA to bolster 
the clinical specificity. 

Currently, real-time PCR (RT-PCR) assays have been 
commercially developed in order to overcome the lack of 
sensitivity of EIA. The RT-PCR designed to detect the con-
servative region of tcdB within the locus of pathogenicity 
(PaLoc) are: Quidel Lyra Direct C. difficileTM assay [Quidel],  
ProdGastroTM Cd [Prodesse], BD GeneOhm CdiffTM [Becton 

Table 1. Results in terms of sensitivity and specificity from different 
assays.

Assays Sensitivity % Specificity % References
GDH-EIA 85-95% 89-99% 32Carman RJ 

et al., 2012 

Toxin EIA 60,00% 99,00% 40Alcala L et 
al., 2008 

IllumigeneTM 77-97% 93-100% 55Coyle K et 
al., 2010 

Cepheid XpertTM 90-100% 92.9-98.6% 49Huang H et 
al., 2009 
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Dickinson], and XpertTM C. difficile [Cepheid]. They were 
cleared by the Food and Drug Administration (FDA) for 
U.S. laboratory use. In Europe, the Xpert C. difficile assay 
targets tcdB in combination with binary toxin and deletion 
of tcdC for the presumptive identification of the 027 clone. 
This assay does not have FDA clearance for distribution in 
the United State, whereas it is commercially available in 
Europe. Several clinical studies have shown that these assays 
exhibit the best concordance with EIA and therefore could 
represent a promising alternative for the diagnosis of CDI 
(38, 49-54) (Tab.1).

Another amplification assay (illumigeneTM C. difficile, 
Meridian Bioscience, Cincinnati, OH) is based on the 
original loop-mediated isothermal amplification (LAMP) 
technology. This assay detects the PaLoc by targeting a 
DNA fragment in the 5’ region of the tcdA, which is intact 
in all strains, including those with a large deletion in the 
tcdA gene. Coyle et al. recently shew that Illumigene C. 
difficile was positive in stools spiked with A- B+ strains 
(55). Many clinical trials have recently evaluated the per-
formance of the real-time PCR-based methods currently 
available on the market. Their sensitivity and specificity 
range from 77.3% to 97.1% and 93% to 100%, respecti-
vely (38, 49-54, 56) . The performance characteristics of 
these Illumigene C. difficile assays are in agreement with 
those data, with sensitivity and specificity of 91.8% and 
99.1%, respectively (Tab.1). Moreover the technology is 
isothermal contrary to the RT-PCR, therefore requires no 
costly capital equipment. 

More recently, there are a variety of multiplex syndromic 
platforms (Luminex xTAG GPP, Luminex Molecular Dia-
gnostics and BioFire FilmArray GI Panel, BioFire Diagno-
stics) able to detect the main causative agents of diarrhoea 
among bacteria, viruses and protozoa. These assays have 
been performed on a multiplex reverse transcriptase PCR 
technology (57-58).

Treatment

The choice of antibiotic therapy should be tailored to the 
severity of disease presentation. The common antibiotics 
used for non severe disease are either oral metronidazole or 
vancomycin. Among their, metronidazole is usually recom-
mended for treatment of mild-moderate disease, whereas 
oral vancomycin is generally preferred (24, 59-60).  The 
vancomycin is poorly absorbed from  the gastrointestinal 
tract, therefore luminal drug levels are high leading to 
either a more rapid suppression of C. difficile or a faster 
resolution of diarrhoea, contrary to metronidazole (61-62). 
However, both oral metronidazole and oral vancomycin have 
associated with the persistent overgrowth of vancomycin 
resistant enterococci (VRE) in stool samples obtained from 
colonized patients during CDI treatment, increasing the risk 
of transmission (63). Moreover, they cause a significant 
destruction of the commensal microbiota, predisposing to 
intestinal colonization of VRE and Candida spp.

An alternative treatment of mild/moderate disease is 
the use of Fidaxomicin, which appears to cause either  less 
disruption of  the microbiota or a lower risk of colonization 
by VRE (64). For regards the severe disease, a recent study 

have suggested an anti-IP-10 antibody, BMS-936557, as a 
potentially effective therapy (65).

According to ESCMID guidelines, the use of high doses 
of vancomycin (500 mg four times daily) is recommended 
for the management of severe complicated CDI, while the 
patients with fulminant CDI require surgical intervention 
(colectomy). In fact, several studies suggest that earlier co-
lectomy is associated with improved survival (66). Recently, 
an alternative surgical approach involves the laparoscopic 
creation of a loop ileostomy and colonic lavage. This proce-
dure involves creating a loop ileostomy, with intra-operative 
colonic infusion and lavage with warmed poly-ethilene 
glycol solution and post-operative instillation of vancomycin 
flushes antegradely (67). 

Recurrent CDI presents when the return of symptoms oc-
curs within 8 weeks of the previous episode. About 10-20% 
of CDI recur after an initial episode of C. difficile, but when 
a patient has had one recurrence, rates of further recurrences 
increase to 40-65% (68). For the treatment of the first CDI 
recurrence, ESCMID recommends the same therapeutic drug 
used in the initial episode, while for the multiple recurrent 
CDI unresponsive to repeated antibiotic treatment, faecal 
transplantion in combination with oral antibiotic treatment 
is strongly recommended (69).

Emerging therapy for C. difficile hypervirulent 
strains: Studies performed since 2000 in Europe, Canada 
and the United States have shown an association with fluoro-
quinolones exposure and infection with hypervirulent strains 
(70-74). On basis of the antibiotic associations, these studies 
have somewhat different prevalences about strains, but a 
meta-analysis supports the fluoroquinolones use as a risk 
factor for infection with PCR ribotype 027. This is occurring 
because the fluoroquinolones are a class of antibiotics with 
a wide spectrum of activity used extensively and inappro-
priately to treat a great variety of infections (75-76). These 
findings have obvious implications for antibiotic stewardship 
interventions, but further studies in settings where this strain 
predominates are needed.

Nowadays, CRS3123 is becoming a promising therapy 
for the treatment of emerging ribotypes (77). CRS3123 
is a therapeutic agent that selectively inhibits the growth, 
spore and toxin production of C. difficile. CRS3123 has not 
demonstrated any cross resistance to existing antibiotics 
remaining active against all C. difficile strains, above all 
against the epidemic fluoroquinolones-resistant NAP1/
BI/027 strains.

 
Conclusion

C. difficile has a worldwide distribution and  its toxigenic 
strains are responsible of clinically relevant infections. In the 
last decade, despite the knowledge on risk factors responsible 
of CDI, in many countries there was however an increase in 
terms of prevalence (78-82). 

Nowadays, CDI is one of the most common healthcare-
associated infections and it is responsible of morbidity 
and mortality increased among adult hospitalized patients. 
Among risks factors, the most important is represented by 
inappropriate antibiotics usage, especially broad-spectrum 
antibiotics, that destroy the intestinal microbiota exacerba-
ting the disease.
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One of the challenging in the management of CDI is 
the early diagnosis. To date, the most widely used tests 
in clinical microbiology laboratories for detection of CDI 
have not adequate sensitivity as stand-alone tests (83). For 
this reason, a multistep testing which includes NAATs is 
recommended for a better diagnosis combining high sensi-
tivity with a short turnaround time (3). Moreover, a timely 
and accurate laboratory diagnosis for CDI is important also 
to limit the nosocomial spread of C. difficile in healthcare 
settings. In fact, the main objective of laboratory tests is 
to identify cases of CDI excluding those not due to CDI, 
since diarrhoea is the most frequent symptom, caused by 
infectious and non-infectious agents, in hospitalized and 
long-term care patients. Therefore, a proper diagnosis of 
CDI reduces transmission and prevents either inadequate 
or unnecessary treatments.

Some limitations in this review must be accounted. First-
ly, it is a narrative review, thus an evaluation of the methodo-
logical quality of the cited studies by a standardized scoring 
tool has not performed and also the articles selection could be 
potentially biased. Secondly, among all the most frequently 
diagnostic methods reported in literature, just a few have 
been described. An accurate selection of the diagnostic tests 
must be tailored to each laboratory needs in order to optimize 
sensitivity, specificity and turnaround time.

Finally, it is important to highlight that the provided labo-
ratory results must be interpreted with caution because they 
must be associated with clinical data and accurate evaluation 
of risk factors of CDI in order to exclude the presence of 
a non pathological C. difficile colonization. Further studies 
will be needed to improve the knowledge of the pathogenesis 
of CDI providing to the clinicians new strategies to overcome 
the actual limits of the laboratory diagnosis.
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